

OXIDATION & REDUCTION

age 2 of 29 STOICHIOMETRY

BHOPAL

58881

0

32 00

PH: (0755)-

X. ż

ຍ່

R. KARIYA

the sides should be same]

Oxidation Half Reaction : Reduction Half Reaction :

Oxidation Parts	R EDUCTION P ARTS
$Fe^{2+} \longrightarrow Fe^{3+}$	$Fe^{3+} \longrightarrow Fe^{2+}$
$Zn \longrightarrow Zn^{2+}$	
$X^{-} \longrightarrow X_{2}$	$X_2 \longrightarrow X^-$
$S^2 \longrightarrow S$	$\operatorname{Cr}_2\operatorname{O}_7^2 \longrightarrow \operatorname{Cr}^{3+}$
$H_2O_2 \longrightarrow O_2$	$NO_3^{-} \longrightarrow NO$
$SO_3^2 \longrightarrow SO_4^2 \longrightarrow$	$MnO_4^{-} \longrightarrow Mn^{2+}$ (neutral med.)
$C_2O_4^2 \longrightarrow CO_2$	$MnO_4^{-} \longrightarrow MnO_2^{-} (Basic med.)$
$S_2O_3^2 \longrightarrow S_4O_6^2 \longrightarrow$	$SO_4^2 \longrightarrow SO_2$
$I_2 \longrightarrow IO_3^-$	$MnO_2 \longrightarrow Mn^{2+}$

Types Of Redox Reduction :

Intermolecular redox, disproportion, Intra molecular redox.

reduction

Disproportion:

In such reactions the oxidising and reducing agents(atom) are the same .

oxidation

$$H_2O_2 + H_2O_2 \longrightarrow 2H_2O + O_2$$

To identify whether a reaction is redox or not, find change in oxidation number or loss and gain of electrons. If there is no change in oxidation number, the reaction is not a redox reaction.

NOTE: To predict the product of reaction remember :

- FREE Download Study Package from website: www.tekoclasses.com Free halogen on reduction gives halide ion $(F_2 \rightarrow F^-)$ (a)
 - Alkali metals on oxidation give metallic ion with + 1 oxidation state. **(b)**
 - Conc. HNO₃ on reduction gives NO₂, while dilute HNO₃ can give NO, N₂, NH₄⁺ or other products (c) depending on the nature of reducing agent and on dilution.
 - (**d**)
 - **(e)**
 - (f)

Nature of oxides based on oxidation number:

depending on the nature of reducing agent and on dilution.								
in acid solution KMnO ₄ is reduced to Mn ²⁺ while in neutral or alkaline, it gives MnO ₂ or K ₂ MnO ₄ .								
H_2O_2 on reduction gives water and on oxidation gives oxygen.								
Dichromate ion in acid solution is reduced to Cr ³⁺ .		ņ.						
e of oxides based on oxidation number:								
Lowest oxidation state \longrightarrow Basic	(MnO)	cto						
Intermediate oxidation state \longrightarrow Amphoteric	(Mn_3O_4, MnO_2)	ire						
Highest oxidation state \longrightarrow Acidic	(Mn_2O_7)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
nesis Reactions :		S						
Never redox reactions. In these two compounds react to form two new compounds and no change in oxidation number occur. eg.								
(i) $Pb(NO_3)_2 + K_2CrO_4 \longrightarrow PbCrO_4 + 2KNO_3$	(ii) $HCl + NaOH \longrightarrow NaCl + H_2O$	TEKO						

Metathesis Reactions :

Law of equivalents refers to that, equivalents of a limiting reactant is equal to equivalent of other reactant reacting in a chemical reaction or equal to equivalents of products formed. *n* factor here we mean a conversion factor by which we divide molar mass of substance to get equivalent mass and it depends on nature of substance which vary from one condition to another condition. We can divide n-factor calculations in two category. (A) when compound is not reacting. (B) when compound is reacting. **Base titration** To find out strength or concentration of unknown acid or base it is titrated against base or acid of brown

Acid-Base titration

To find out strength or concentration of unknown acid or base it is titrated against base or acid of known strength. At the equivalence point we can know amount of acid or base used and then with the help of law of equivalents we can find strength of unknown.

Meq of acid at equivalence point = Meq of base at equivalence point

Back titration

Back titration is used in volumetric analysis to find out excess of reagent added by titrating it with suitable reagent. It is also used to find out percentage purity of sample. For example in acid-base titration suppose we have added excess base in acid mixture. To find excess base we can titrate the solution with another acid of known strength.

Precipitation titration :

In ionic reaction we can know strength of unknown solution of salt by titrating it against a reagent with which it can form precipitate. For example NaCl strength can be known by titrating it against AgNO solution with which it form white ppt. of AgCl.

Meq. of NaCl at equivalence point = meq of AgNO₂ used = meq of AgCl formed

Double indicator acid-base titration:

In the acid-base titration the equivalence point is known with the help of indicator which changes its colour at the end point. In the titration of polyacidic base or polybasic acid there are more than one end point for each step neutralization. Sometimes one indicator is not able to give colour change at every end

$$Na_2CO_3 + HCl \longrightarrow NaHCO_3 + NaCl$$

 $NaHCO_3 + HCl \longrightarrow HCO_3 + NaCl$

point. So to find out end point we have to use more than one indicator. For example in the titration of Na_2CO_3 against HCl there are two end points. $Na_2CO_3 + HCl \longrightarrow NaHCO_3 + NaCl$ $NaHCO_3 + HCl \longrightarrow H_2CO_3 + NaCl$ When we use phenophthalein in the above titration it changes its colour at first end point when NaHCO₃ **''** is formed and with it we can not know second end point. Similarly with methyl orange it changes its colour at second and point. colour at second end point only and we can not know first end point. It is because all indicator changes colour on the basis of pH of medium. So in titration of NaHCO₂, KHCO₂ against acid phenolphthalein can not be used.

So we can write with phenolpthalein, if total meq of $Na_2CO_3 = 1$ then

 $\frac{1}{2}$ meq of Na₂CO₃ = meq of HCl

with methyl orange,

meq of $Na_2CO_3 = meq$ of HCl

	Titration	Indicator	pH Range	n factor	AAF C
	Na ₂ CO ₃ against acid	Phenolphthalein	8.3 – 10	1	ОШОК
	K_2CO_3 of products formed in reaction	Methyl orange	3.1 – 4.4	2	7T2 0C 3-
<i>Note:</i> When we carry out dilution of solution, meq eq, milli mole or mole of substance does not chang they represent amount of substance, however molar concentration may change.					ise

Solubilities of some important salt's :

	1.	Chloride :	AgCl-White ppt.	
			Hg_2Cl_2 -White ppt.	All other chlorides are soluble in water.
_			$PbCl_2 - White ppt.$	
OU			CuCl-Insolution ppt.	
S.C			BiOCl – White ppt.	
SSe			SbOCl – White ppt.	
cla			Hg_2OCl_2 – White ppt.	
ko	2.	Bromide :	AgBr – Pate yellow ppt.	
v.te			$PbBr_2 - White ppt.$	All other bromides are soluble in water
MM			Hg_2Br_2 – White ppt.	
A	-		CuBr – White ppt.	
ë	3.	Iodide :	AgI – Yellow ppt.	
sit			$Pbl_2 - Yellow ppt.$	
veb	<		Hg_2I_2 – Green ppt.	
N N			$HgI_2 - Red ppt.$	
lon			Cui – white ppt.	
e fi	4	Someimportant	BI_3 -Black ppl.	
ag	4.	some important	$Ag_2O = BIOWII ppt.$	
J Ck		bydrovises .	$Pb(OH)_2$ – White ppt. Pb(OH) White ppt	
ĥ		liyul oxises .	$H_{g} \Omega = Black ppt$	
ldy		-	$Hg_2 O$ – Yellow ppt.	
Stu			$C_{\rm U} O - \text{Red ppt}$	
q			CuO - Black ppt.	
loa			$Cu(OH)_{a}$ – Blue ppt.	
ΠM			$Cd(OH)_2$ — White ppt.	
Do			$Fe(OH)_2$ – White ppt.	
H			$Fe(OH)_3^2$ – Red ppt.	
RE			$Sn(OH)_2$ – White ppt.	
1			$Sn(OH)_4$ – White ppt.	
			$Al(OH)_3$ – White gelatenons	
			$Cr(OH)_3$ – Grey-Green	
			$Co(OH)_2$ – Pink	
			$Co(OH)_3$ – Brownish black	
			$Ni(OH)_2$ – Green	
			Ni(OH) ₃ –Black	
			$Mn(OH)_2 - White$	
			$MnO(OH)_2 - Brown$	

		$Zn(OH)_2$ – White Mg(OH) ₂ – White	AETRY				
	Carbonates :	Except Alkali metals and NH_4^+ all other carbonates are insoluble. $Ag_2CO_3 \longrightarrow White ppt. \longrightarrow Ag_2O + CO_2$ $3HgO.HgCO_3 \longrightarrow basic murcuric carbonate White ppt.$ $CuCO_3 \longrightarrow Green ppt.$ $CaCO_3 \longrightarrow White ppt.$					
FREE Download Study Package from website: www.tekoclasses.com	Sulphites (SO ₃ ²⁻):	Except Alkali metal and Ammonium, all other sulphite are generally insoluble. Examples : Ag_2SO_3 $PbSO_3$ $BaSO_3$ $CaSO_3$ White ppt.	норац Ра				
	Thiosulphates :	Mostly soluble except $Ag_2S_2O_3 \longrightarrow$ White ppt. $[Ag(S_2O_3)_2]^{3-}$ soluble $PbS_2O_3 \longrightarrow$ White ppt. $BaS_2O_3 \longrightarrow$ White ppt.	30 58881 , B				
	Thiocynate (SCN ⁻) :	Hg(SCN) ₂ – White ppt. (Pharaoh's serpent) Ag(SCN) – White ppt. Cu(SCN) ₂ – Black ppt. Cu(SCN) – White ppt. Fe(SCN) ₃ – Red complex. $[Co(SCN)_4]^{2-}$ – Blue complex Co[Hg(SCN)_4] – Blue ppt.	0755)- 32 00 000, 0 989				
	Cynaides(CN ⁻) :	Except Alkali metal Alkaline earth metal cyanides are soluble in water. $Hg(CN)_2$ – soluble in water in undissociated form $Ag(CN)$ – White ppt. $[Ag(CN)_2]^-$ soluble $Pb(CN)_2$ – White ppt. $Fe(CN)_3$ – Brown ppt. $[Fe(CN)_6]^3$ – soluble $Co(CN)_2$ – Brown ppt. $[Co(CN)_6]^4$ – soluble $Ni(CN)_2$ – Green $[Ni(CN)_4]^2$ – soluble	YA (S. R. K. Sir) PH: (
	Sulphides :	Except Alkali metals and ammonium salt's all other sulphides are insoluble. Some insoluble sulphides with unusual colour are $CdS \longrightarrow Yellow$ $MnS \longrightarrow Pink$ $ZnS \longrightarrow White$ $SnS \longrightarrow Brown$ $SnS_2 \longrightarrow Yellow$ $As_2S_3 \longrightarrow Yellow$ $Sb_2S_3 \longrightarrow Orange$, Director : SUHAG R. KARI				
	Chromates :	$Ag_2CrO_4 \longrightarrow Red ppt.$ $PbCrO_4 \longrightarrow Yellow ppt.$ $BaCrO_4 \longrightarrow Yellow ppt.$ $FeCrO_4 \longrightarrow Green ppt.$ Dichromates are generally soluble. $MnO_4 - Permangnates are generally soluble.$	TEKO CLASSES				

Phosphates:	Are generally insoluble : $Ag_3PO_4 \longrightarrow Yellow ppt.$ $AlPO_4 \longrightarrow Yellow ppt.$ $ZrO(HPO_4) \longrightarrow White ppt.$ $Mg(NH_4)PO_4 \longrightarrow White ppt.$ $(NH_4)_3[P Mo_{12}O_{40}] \longrightarrow Canary yellow ppt.$	
Phosphite (H	PO_4^{2-}): Except Alkali metals all other phosphites are insoluble	150
Hypo phosphi	e: All hypophosphites are soluble in water. All Acetate are soluble except Ag(CH ₃ COO) All formates are soluble except Ag(HCOO) Tatarate.Citrate.Salicylate.Succinate of Silver-are all insoluble white ppt.	780 T
Some Importa	<i>nt ppt.:</i> KH (Tartarate) \longrightarrow White ppt. NH ₄ H(Tartarate) \longrightarrow White ppt. K ₂ [PtCl ₆] \longrightarrow White ppt. K ₃ [Co(NO ₂) ₆] \longrightarrow Yellow ppt. (NH ₄) ₃ [Co(NO ₂) ₆] \longrightarrow Yellow ppt. (NH ₄) ₂ [PtCl ₆] \longrightarrow Yellow ppt. <i>HEATING EFFECTS</i>	30 30001 , BUULAL
Heatin	g effect of carbonate & bicarbonate salts	000
All cart	onates except (Na, K, Rb, Cs) decompose on heating giving CO ₂	5
	$L_{1_{2}CO_{3}} \longrightarrow L_{1_{2}}O + CO_{2}$ $MCO_{3} \longrightarrow MO + CO_{2} [M = Be, Mg, Ca, Sr, Ba]$ $\underbrace{Cu(OH)_{2}.CuCO_{3}}_{Basic Cu(II) carbonate} \longrightarrow 2CuO + CO_{2} + H_{2}O$ $ZnCO_{3} \longrightarrow ZnO_{Yellow(hot)}_{white(cold)} + CO_{2}; PbCO_{3} \longrightarrow PbO_{Yellow} + CO_{2}$ $Ag_{2}CO_{3} \longrightarrow 2Ag_{Black} + CO_{2} + \frac{1}{2}O_{2}; HgCO_{3} \longrightarrow Hg + \frac{1}{2}O_{2}\uparrow + CO_{2}$ $Yellow$ $(NH_{4})_{2}CO_{3} \longrightarrow 2NH_{3} + H_{2}O + CO_{2}$ All bicarbonates decompose to give carbonates and CO ₂ , eg	(9. K. N. air) FII: (U/33)- 32 VU VUV,
	An obtained bonates decompose to give carbonates and CO_2 , eg. 2N ₂ HCO $\xrightarrow{\Delta}$ N ₂ CO + CO + H O	
	[General reaction: $2\text{HCO}_{2}^{-} \longrightarrow \text{CO}_{2}^{2-} + \text{H}_{2}\text{O} + \text{CO}_{2}$]	
Heatin [If anio	g effect of ammonium salts $NH_4NO_2 \longrightarrow N_2 + 2H_2O;$ $NH_4NO_3 \longrightarrow N_2O + 2H_2O$ $(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + 4H_2O$ $2NH_4ClO_4 \longrightarrow N_2 + Cl_2 + 2O_2 + 4H_2O$ $2NH_4IO_3 \longrightarrow N_2 + I_2 + O_2 + 4H_2O$ [If anionic part is oxdising in nature, then N_2 will be the product (some times N_2O).] $(NH_4)_2HPO_4 \longrightarrow HPO_3 + H_2O + 2NH_3$ $(NH_4)_2SO_4 \longrightarrow NH_3 + H_2SO_4$ $2(NH_3)_3PO_4 \longrightarrow 2NH_3 + P_2O_5 + 3H_2O$ $(NH_4)_2CO_3 \longrightarrow 2NH_3 + H_2O + CO_2$ hic part weakly oxidising or non oxidising in nature then NH_3 will be the product.]	IENU ULAGGEG, UILECTOF : GUILAG N.

$$2Ag_{2}O \xrightarrow{\Delta}{300^{\circ}C} 4Ag + O_{2} \qquad ; \qquad HgO \xrightarrow{\Delta}{400^{\circ}C} HgO \xrightarrow{\Delta}{\text{strong}} Hg + \frac{1}{2}O_{2}$$

$$PbO_{2} \xrightarrow{\Delta} PbO + \frac{1}{2}O_{2} \qquad ; \qquad Pb_{3}O_{4} \xrightarrow{>470^{\circ}C} O_{\text{Red lead}} \xrightarrow{PbO} O_{\text{Litharge}} O_{\text{Litharge}} O_{2} \xrightarrow{\text{Litharge}} O_{2} \xrightarrow{\text{Strong}} O_{2} \xrightarrow{\text{Strong}} O_{2} \xrightarrow{\text{Strong}} O_{2} \xrightarrow{\text{Litharge}} O_{2} \xrightarrow{\text{Strong}} O_{2} \xrightarrow{$$

Heating effect of dichromate & chromate salts

$$\begin{array}{c} (\mathrm{NH}_{4})_{2}\mathrm{Cr}_{2}\mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{N}_{2} + \mathrm{Cr}_{2}\mathrm{O}_{3} + 4\mathrm{H}_{2}\mathrm{O}; \quad \mathrm{K}_{2}\mathrm{Cr}_{2}\mathrm{O}_{7} \xrightarrow{\Delta} 2\mathrm{K}_{2}\mathrm{Cr}\mathrm{O}_{4} + \mathrm{Cr}_{2}\mathrm{O}_{3} + \frac{7}{2}\mathrm{O}_{2} \\ \hline \mathbf{Heating effect of phosphate salts} \\ \mathrm{NaH}_{2}\mathrm{PO}_{4} \xrightarrow{\Delta} \mathrm{H}_{2}\mathrm{O} + \mathrm{NaPO}_{3}; \quad \mathrm{Na}_{2}\mathrm{HPO}_{4} \xrightarrow{\Delta} \mathrm{H}_{2}\mathrm{O} + \mathrm{Na}_{2}\mathrm{P}_{2}\mathrm{O}_{7} \\ \overset{\mathrm{Phosphate salt}}{\mathrm{Na}_{3}\mathrm{PO}_{4}} \xrightarrow{\Delta} \mathrm{No effect} \\ \overset{\mathrm{Na}_{2}\mathrm{PO}_{2}\mathrm{phosphate salt} \\ \mathrm{Na(\mathrm{NH}_{4})\mathrm{HPO}_{4}\mathrm{H}_{2}\mathrm{O} \xrightarrow{A} \mathrm{Ma}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + 2\mathrm{NH}_{3} + \mathrm{H}_{2}\mathrm{O} \\ 2\mathrm{Mg}(\mathrm{NH}_{4})\mathrm{HO}_{4} \xrightarrow{\Delta} \mathrm{Mg}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + 2\mathrm{NH}_{3} + \mathrm{H}_{2}\mathrm{O} \\ 2\mathrm{Mg}(\mathrm{NH}_{4})\mathrm{PO}_{4} \xrightarrow{\Delta} \mathrm{Mg}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + 2\mathrm{NH}_{3} + \mathrm{H}_{2}\mathrm{O} \\ 2\mathrm{Mg}(\mathrm{OAc})_{2} \xrightarrow{\Delta} \mathrm{PbO} + \mathrm{CO}_{2} + \mathrm{CH}_{3}\mathrm{COCH}_{3} \\ \mathrm{Na}_{2}\mathrm{C}_{2}\mathrm{O}_{4} \xrightarrow{\Delta} \mathrm{SnO} + \mathrm{CO}_{2} + \mathrm{CO} \\ \mathrm{Mg}(\mathrm{OAc})_{2} \longrightarrow \mathrm{BeO} + \mathrm{CO}_{2} + \mathrm{CH}_{3}\mathrm{COCH}_{3} \\ \mathrm{HCO}_{2}\mathrm{Na} \xrightarrow{2}\mathrm{Soc}_{2}\mathrm{A}\mathrm{Hg} + 2\mathrm{CO}_{2} \\ \mathrm{Be}(\mathrm{OAc})_{2} \longrightarrow \mathrm{BaCO}_{3} + \mathrm{CH}_{3}\mathrm{COCH}_{3} \\ \mathrm{HCOO}_{3} \xrightarrow{3}\mathrm{HCOOH} + 2\mathrm{Ag} + \mathrm{CO}_{2} \\ \mathrm{Heating effect of Acids} \\ 2\mathrm{HNO}_{3} \xrightarrow{3}\mathrm{Da}_{2}\mathrm{COOH} + 2\mathrm{Ag} + \mathrm{CO}_{2} \\ \mathrm{Heating effect of Acids} \\ 2\mathrm{HNO}_{3} \xrightarrow{\Delta} \mathrm{H}_{2}\mathrm{O} + 2\mathrm{NO}_{2} + \mathrm{S}_{2}^{2}\mathrm{O}_{2} \\ \mathrm{H}_{2}\mathrm{SO}_{4} \xrightarrow{444^{\mathrm{ev}\mathrm{C}}}\mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{3}; \\ \mathrm{H}_{2}\mathrm{SO}_{4} \xrightarrow{-3\mathrm{Ro}\mathrm{C}} + \mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \frac{1}{2}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{effect} \xrightarrow{4}\mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}^{4}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{effect} \xrightarrow{4}\mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}^{2}\mathrm{O}_{2} \\ \mathrm{H}_{2}\mathrm{SO}_{4} \xrightarrow{-4\mathrm{Hg}}\mathrm{C} + \mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}^{4}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{effect} + \mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}^{2}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{effect} \times \mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{effect} \mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{effect} + \mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{effect} + \mathrm{H}_{2}\mathrm{O} + \mathrm{SO}_{2} + \mathrm{S}_{2}\mathrm{O}_{2} \\ \mathrm{Haing} \mathrm{Haing} \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{S}_{2}\mathrm{O}_{2}$$

FREE Download Study Package from website: www.tekoclasses.com

$$H_3BO_3 \xrightarrow{100^{\circ}C} 4HBO_2 \xrightarrow{140^{\circ}C} H_2B_4O_7 \xrightarrow{\text{Red}} 2B_2O_3 + H_2O_3$$

 $H_2C_2O_4 \xrightarrow{\Delta} H_2O + CO + CO_2$

Some reactions of important oxidising agents

(I) Potassium dichromate $(K_{\gamma}Cr_{\gamma}O_{\gamma})$:

 $Cr_2O_7^{2-}$ ion takes electrons in the acidic medium and is reduced to Cr^{3+} ion. Thus $Cr_2O_7^{2-}$ acts as an oxidising agent in acidic medium.

or
$$\begin{array}{c} K_2 Cr_2 O_7 + 4H_2 SO_4(dil.) \longrightarrow K_2 SO_4 + Cr_2(SO_4)_3 + 4H_2 O + 3O \\ Cr_2 O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2 O \end{array}$$

- (1) $K_2Cr_2O_7 + 7H_2SO_4 + 6KI \longrightarrow 4K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3I_2$
- $Cr_{2}O_{2}^{2} + 14H^{+} + 6I^{-} \longrightarrow 2Cr^{3+} + 7H_{2}O + 3I_{2}$ or
- $\begin{array}{l} K_2\bar{Cr}_2O_7+7H_2SO_4+6FeSO_4 \longrightarrow K_2\bar{S}O_4+\bar{Cr}_2(SO_4)_3+7H_2O+3Fe_2(SO_4)_3\\ \bar{Cr}_2O_7^{2-}+14H^++6Fe^{2+} \longrightarrow 2Cr^{3+}+7H_2O+6Fe^{3+} \end{array}$ (2)
- or
- $\begin{array}{c} K_2 \tilde{Cr}_2 O_7 + 4H_2 SO_4 + 3H_2 S \longrightarrow K_2 SO_4 + \tilde{Cr}_2 (SO_4)_3 + 7H_2 O + 3S \\ \tilde{Cr}_2 O_7^{2-} + 8H^2 + 3H_2 S \longrightarrow 2Cr^{3+} + 7H_2 O + 3S \end{array}$ (3)
- or

(4)
$$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O_4$$

or
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 2\operatorname{H}^+ + 3\operatorname{SO}_2 \longrightarrow 2\operatorname{Cr}^{3+} + 3\operatorname{MnQ} + \operatorname{H}_2 \operatorname{O}$$

(5)
$$K_2Cr_2O_7 + 4H_2SO_4 + 3Na_2SO_3 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Na_2SO_3 + 4H_2O_3$$

or
$$\operatorname{Cr}_{2}O_{7}^{2-} + 8H^{+} + 3SO_{3}^{2-} \longrightarrow 2Cr^{3+} + 3SO_{4}^{2-} + 4H_{2}O$$

(6)
$$K_2Cr_2O_7 + 14HCl \longrightarrow 2KCl + 2CrCl_3 + 7H_2O + 3Cl_3$$

or $Cr_2O_7^{2-} + 14H^+ + 6Cl^- \longrightarrow 2Cr^{3+} + 7H_2O + 3Cl_3$

$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \xrightarrow{\text{ether}} K_2SO_4 + 2CrO_5 + 5H_2O_5$$

$$\operatorname{Cr}_{2}O_{7}^{2-} + 2H^{+} + 4H_{2}O_{2} \xrightarrow{\text{ether}} 2\operatorname{Cr}O_{5} + 5H_{2}O$$

Manganese dioxide (MnO₂) :

In presence of excess of H⁺ ions, MnO₂ acts as a stronge oxidising agent. In showing this behaviour Mn⁴⁺ changes to Mn²⁺ ion.

$$MnO_2 + 4H^+ + 4e^- \longrightarrow Mn^{2+} + 2H_2O$$

(1)
$$\operatorname{MnO}_2 + 4\mathrm{H}^+ + \mathrm{C}_2\mathrm{O}_4^- \longrightarrow \mathrm{Mn}^{2+} + 2\mathrm{H}_2\mathrm{O} + 2\mathrm{CO}_2$$

2)
$$\operatorname{MnO}_2 + 4\mathrm{H}^+ + 2\mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+} + 2\mathrm{H}_2\mathrm{O} + 2\mathrm{Fe}^{3+}$$

$$(3) \qquad MnO_2 + 4H^+ + 2Cl^- \longrightarrow Mn^{2+} + 2H_2O + Cl_2$$

Potassium permangate (KMnO₄) : (III)

(A) In acidic medium: The reduction of MnO_4^- ion into Mn^{2+} ion san be represented by the following ionic equation:

$$2 \operatorname{MnO}_{4}^{-} + 4\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+} + 2\mathrm{H}_{2}\mathrm{O} + 5\mathrm{O}$$

or (1)

(7)or

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$

KI to $I_2 (I^- \rightarrow I_2)$

$$2KMnO_4 + 8H_2SO_4 + 10KI \longrightarrow 6K_2SO_4 + 2MnSO_4 + 8H_2O + 5I_2$$

or
$$2 \operatorname{MnO}_4^- + 16\mathrm{H}^+ + 10\mathrm{I}^- \longrightarrow 2\mathrm{Mn}^{2+} + 8\mathrm{H}_2\mathrm{O} + 5\mathrm{I}_2$$

(2)*Ferrous salts to ferric salts* ($Fe^{2+} \rightarrow Fe^{3+}$) $2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5Fe_2(SO_4)_3$

or
$$MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow 2Mn^{2+} + 4H_2O + 5Fe^{3+}$$

(3) Oradic acid (H, C, Q) or oxalate (C, Q,²) to CO,
2KMnO₄ + 8H₃SO₄ + 5H₂C, Q₄
$$\longrightarrow$$
 K, SO₄ + 2MnSO₄ + 8H₃O + 10CO,
or 2MnO₄⁻ + 16H⁺ + 5C, Q₄⁻ \longrightarrow 2Mn²⁺ + 8H₂O + 5CO₂
(4) H₂S to S (S² \rightarrow S²)
2KMnO₄ + 3H₂SO₄ + 5H₂S \longrightarrow K₂SO₄ + 2MnSO₄ + 8H₂O + 5S
or 2MnO₄⁻ + 16H⁺ + 5NO₂⁻ \longrightarrow 2Mn²⁺ + 8H₂O + 5S
(5) Nitrite to nitrate (NO₅⁻ \rightarrow NO₅⁻)
2KMnO₄ + 3H₂SO₄ + 5KNO₂ \longrightarrow K₂SO₄ + 2MnSO₄ + 3H₂O + 5KNO₃
or 2MnO₄⁻ + 6H⁺ + 5NO₂⁻ \longrightarrow 2Mn²⁺ + 3H₂O + 5NO₅⁻
(6) Arsenite AsO₃²⁺ (As = +3) to arsenate, AsO₄²⁺ (As = +5)
2KMnO₄ + 3H₂SO₄ + 5Na₄AsO₄ \longrightarrow K₂SO₄ + 2MnSO₄ + 3H₂O + 5Na₄AsO₄
or 2MnO₄⁻ + 6H⁺ + 5AsO₃³⁺ \longrightarrow 2Mn²⁺ + 3H₂O + 5AsO₄³⁺
(7) Sulphite, SO₂⁻¹ (S = +4) to sulphate, SO₄⁻² (S = +6)
2KMnO₄ + 3H₂SO₄ + 5Na₂SO₃ \longrightarrow K₂SO₄ + 2MnSO₄ + 3H₂O + 5Na₄SO₄
or 2MnO₄⁻ + 6H⁺ + 5SO₅³⁻ \longrightarrow 2Mn²⁺ + 3H₂O + 5SO₄²⁻
(8) Halaogen acid. HX (X = -1) to the corresponding halaogen, X₄ (X = 0) (X⁻ \rightarrow X₂)
2KMnO₄ + 3H₂SO₄ + 10HC1 \longrightarrow K₂SO₄ + 2MnSO₄ + 8H₂O + 5O₂
or 2MnO₄⁻ + 16H + 10CT \longrightarrow 2Mn²⁺ + 3H₂O + 5Cl₂
(9) H₂O₄ (O = -1) to O₂ (O = 0)
2KMnO₄ + 3H₂SO₄ + 5H₂O₂ \longrightarrow 2K₂SO₄ + 2MnSO₄ + 8H₄O + 5O₂
or 2MnO₄⁻ + 16H + 5H₂O₂ \longrightarrow 2K₂SO₄ + 2MnSO₄ + 8H₄O + 5O₂
or 2MnO₄⁻ + 16H + 5H₂O₂ \longrightarrow 2K₂SO₄ + 2MnSO₄ + 8H₄O + 5O₂
or 2MnO₄⁻ + 16H + 5H₂O₄ \longrightarrow 2Mn²⁺ + 16H₂O + 5N₂
(1) H₂Adrazoic acid. HV, (N = -1/3) to N₃(N = 0)
2KMnO₄ + 3H₂SO₄ + 10HN₃ \longrightarrow 2K₂SO₄ + 4MnSO₄ + 16H₄O + 5N₂
or 4MnO₄⁻ + 12H + 5N₂M₄ \longrightarrow 2Mn²⁺ + 16H₂O + 10HNO₃
or 3MnO₄⁻ + 19H⁺ + 5NO \longrightarrow 3Mn²⁺ × 2H₂O + 5HNO₃
(14) Potassium ferrocyanide, K₄[Fe(CN)₆] \longrightarrow Mn³⁺ + 4H₅O + 10HNO₅
or 3MnO₄⁻ + 9H₅SO₄ + 10K₁[Fe(CN)₆] \longrightarrow 3K₅SO₄ + 6MnSO₄ + 4H₂O + 10HNO₅
or 3MnO₄⁻ + 8H⁺ + 5[Fe(CN)₆]⁴⁺ \longrightarrow 3K₅S

Page 12 of 29 STOICHIOMETRY

TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881 , BHOPAL

	(B)	In alkaline medium: In alkaline solution MnO_4^- ion is reduced to colourless & insoluble MnO_2 according to the following equations:				
		$2 \operatorname{MnO_4^-} + \operatorname{H_2O} \xrightarrow{alkali} 2 \operatorname{MnO_2} + 2 \operatorname{OH^-} + 3 \operatorname{O}$	CHI			
	or	$MnO_4^- + 2H_2O + 3e^- \longrightarrow MnO_2 + 4OH^-$	IOI			
	(1)	$Iodides(I^{-}) to iodates (IO_{3}^{-})$ 2KMnO ₄ + H ₂ O + KI \longrightarrow 2MnO ₂ + 2KOH + KIO ₃	13 of 29 S			
	or	$2 \operatorname{MnO}_4^- + \operatorname{H}_2 O + I^- \longrightarrow 2 \operatorname{MnO}_2^- + 2 O H^- + IO_3^-$	age			
	(2)	$NH_3(N = -3) \text{ to } N_2 (N = 0)$ 2KMnO ₄ + 2NH ₃ \longrightarrow 2MnO ₂ + 2KOH + N ₂ + 2 H ₂ O				
	or	$2 \operatorname{MnO}_4^- + 2\operatorname{NH}_3 \longrightarrow 2\operatorname{H}_2\operatorname{O} + 2\operatorname{OH}^- + \operatorname{N}_2 + 2 \operatorname{MnO}_2$	Ļ			
	(3)	Nitrotoluene to nitrobenzoic acid	DP			
		CH ₃ COOH	BH			
		$2KMnO_4 + C_6H_4 \longrightarrow 2MnO_2 + 2KOH + C_6H_4 \longrightarrow NO$	81.			
			588			
		Nitrotoluene Nitrobenzoic acid	930			
	or	$2 \operatorname{MnO}_{4}^{-} + \operatorname{C}_{6} \operatorname{H}_{4}^{-} \operatorname{NO}_{2}^{-} + \operatorname{C}_{6} \operatorname{H}_{4}^{-} \operatorname{NO}_{2}^{-} + \operatorname{OH}^{-} \operatorname{NO}_{2}^{-}$	0. 0 989			
	(4)	Ethylene $(H_2C = CH_2)$ to ethylene glycol $(HO-CH_2-CH_2-OH)$	00 0			
~		$2KMnO_4 + 4H_2O + 3H_2C = CH_2 \longrightarrow 2MnO_2 + 2KOH + 3HO - CH_2 - CH_2 - OH$	2 01			
	or	$2 \operatorname{MnO}_{4}^{-} + 4 \operatorname{H}_{2} \operatorname{O} + 3 \operatorname{H}_{2} \operatorname{C=CH}_{2} \longrightarrow 2 \operatorname{MnO}_{2} + 2 \operatorname{OH}^{-} + 3 \operatorname{HO-CH}_{2} - \operatorname{CH}_{2} - \operatorname{OH}$	5)- 3			
			075			
	(C)	In neutral medium: In neutral solution, KMnO_4 is directly reduced to MnO_2 2KMnO ₄ + H ₂ O \longrightarrow 2KOH + 2MnO ₂ + 3O) PH: (
	or	$2 \operatorname{MnO}_4^- + \operatorname{H}_2 O \longrightarrow 2OH^- + 2MnO_2 + 3O$	Sir			
	or	$MnO_4^- + 2H_2O + 3e^- \longrightarrow 2MnO_2 + 4OH^-$	ž			
	(1)	Manganous salt (e.g. $MnSO_4$) to insoluble $MnO_2(Mn^{2+} \longrightarrow Mn^{4+}O_2)$ 2KMnO ₄ + 4H ₂ O + 3MnSO ₄ + H ₂ SO ₄ \longrightarrow 5MnO ₂ + 3H ₂ SO ₄ + K ₂ SO ₄ + 2H ₂ O	YA (S. F			
	or	$2 \operatorname{MnO}_{4}^{-} + 10 \operatorname{H}_{2}\mathrm{O} + 3 \operatorname{Mn}^{2+} \longrightarrow 5 \operatorname{MnO}_{2} + 8 \operatorname{H}_{2}\mathrm{O} + 4 \operatorname{H}^{+}$	ARI			
	(2)	Sodium thiosulphate, $Na_2S_2O_3$ (S = +2) to Na_2SO_4 (S = +6) $[S_2O_4^{2-} \longrightarrow SO_4^{2-}]$ 8KMn O_4 + H_2O + $3Na_2S_2O_3 \longrightarrow 8MnO_2$ + 2KOH + $3Na_2SO_4$ + $3K_2SO_4$	G R. K			
	or	$8 \operatorname{MnO}_{4}^{-} + \operatorname{H}_{2}O + 3S_{2}O_{3}^{2-} \longrightarrow 8\operatorname{MnO}_{2} + 2OH^{-} + 6SO_{4}^{2-}$	DHA			
	(3)	Nitrogen dioxide, NO ₂ (N = +4) to HNO ₃ (N = +5) [NO ₂ \longrightarrow NO ₃ ⁻] 2KMnO ₄ + 4H ₂ O + 6NO ₂ \longrightarrow 2KOH + 2MnO ₂ + 2MnO ₂ + 6HNO ₃	tor:SI			
	or	$MnO_4^- + H_2O + 3NO_2 \longrightarrow MnO_2 + 3NO_3^- + 2H^+$	Direc			

GLOSSARY Aliquot. A portion of the whole, usually a simple fraction. A portion of a sample withdraw from a volumetric flask with a pipet is called an aliquot. Analytical concentration. The total number of moles per litre of a solute regardless of any reactions that might

Equivalent. The amount of a substance which furnishes or reacts with 1 mol of H⁺ (acid-base), 1 mol of ⁴ electrons (redox), or 1 mol of a univalent cation (precipitation and complex formation)

Equivalent weight. The weight in grams of one equivalent of a substance.

BHOPAL Equivalence point. The point in a titration where the number of equivalents of titrant is the same as the number of equivalents of analyte. 0 98930 58881 ,

End point. The point in a titration where an indicator changes color.

Formula weight. The number of formula weights of all the atoms in the chemical formula of a substance.

Formality. The number of formula weights of solute per litre of solution; synonymous with analytical

Formality. The number of formula weights of solute per litre of solution; synonymous with analytical concentration. Indicator: A chemical substance which exhibits different colors in the presence of excess analyte or titrant. Normality. The number of equivalents of solute per litre of solution. Primary standard. A substance available in a pure form or state of known purity which is used in standardizing a solution.

¥.

Ľ

TEKO CLASSES, Director : SUHAG R. KARIYA (S.

Standardization. The process by which the concentration of a solution is accurately ascertained.

Standard solution. A solution whose concentration has been accurately determined.

Titrant. The reagent (a standard solution) which is added from a buret to react with the analyte.

EASY RIDE

—•

		EASY RIDE	TRY
		Acid Base Titration	OME
	Q1.	A small amount of $CaCO_3$ completely neutralized 52.5 mL of N/10 HCl and no acid is left at the end. After converting all calcium chloride to $CaSO_4$, how much plaster of paris can be obtained?	STOICHI
	Q2.	How many ml of 0.1 N HCl are required to react completely with 1 g mixture of Na_2CO_3 and $NaHCO_3$ containing equimolar amounts of two?	16 of 29 S
	Q3.	10 g CaCO_3 were dissolved in 250 ml of M HCl and the solution was boiled. What volume of 2 M KOH would be required to equivalence point after boiling? Assume no change in volume during boiling.	Page
	Q4.	125 mL of a solution of tribasic acid (molecular weight = 210) was neutralized by 118mL of decinormal NaOH solution and the trisodium salt was formed. Calculate the concentration of the acid in grams per litre.	OPAL
ses.com	Q5.	Upon heating one litre of N/2 HCl solution, $2.675g$ of hydrogen chloride is lost and the volume of solution shrinks to 750 ml. Calculate (i) the normality of the resultant solution (ii) the number of milli-equivalents of HCl in 100 mL of the original solution.	3881, BH
te: www.tekoclass	Q6.	For the standardization of a Ba(OH) ₂ solution, 0.2g of potassium acid phthalate (m.wt. 204.2g) weighed which was then titrated with Ba(OH) ₂ solution. The titration requires 27.80mL Ba(OH) ₂ solution. What is the molarity of base? The reaction products include $BaC_8H_4O_4$ as only Ba containing species.	0 98930 58
	Q7.	A definite amount of NH_4Cl was boiled with 100mL of 0.8N NaOH for complete reaction. After the reaction, the reactant mixture containing excess of NaOH was neutralized with 12.5mL of 0.75N H_2SO_4 . Calculate the amount of NH_4Cl taken.	000 000
websi	Q8.	H_3PO_4 is a tri basic acid and one of its salt is NaH_2PO_4 . What volume of 1 M NaOH solution should be added to 12 g of NaH_2PO_4 to convert it into Na_3PO_4 ?	55)- 32
ackage from	Q9.	Calculate the number of gm. of borax, Na ₂ B ₄ O ₇ .10H ₂ O, per litre of a solution of which 25cc required 15.6 cc of N/10 hydrochloric acid for naturalization, methyl orange being used as indicator. In aqueous solution, borax hydrolyses according to the equation: Na ₂ B ₄ O ₇ + 7H ₂ O = 2NaOH + 4H ₃ BO ₃ The liberated boric acid is a weak acid and is without effect on methyl orange.	K. Sir) PH: (07
ad Study	Q10.	25mL of a solution of Na ₂ CO ₃ having a specific gravity of 1.25g ml ⁻¹ required 32.9 mL of a solution of HCl containing 109.5g of the acid per litre for complete neutralization. Calculate the volume of 0.84N H_2SO_4 that will be completely neutralized by 125g of Na ₂ CO ₃ solution.	ARIYA (S. R
ownloa	Q11.	A solution containing 4.2 g of KOH and $Ca(OH)_2$ is neutralized by an acid. It consumes 0.1 equivalent of acid, calculate the percentage composition of the sample.	G R. KA
FREE D	Q12.	5gm of a double sulphate of iron and ammonia was boiled with an excess of sodium hydroxide solution and the liberated ammonia was passed into 50cc of normal sulphuric acid. The excess of acid was found to require 24.5cc of normal sodium hydroxide for naturalization. Calculate the percentage of ammonia (expressed as NH_3) in the double salt.	rector : SUHA
	Q13.	$0.5 \text{ g of fuming H}_2\text{SO}_4$ (oleum) is diluted with water. The solution requires 26.7 ml of 0.4 N NaOH for complete neutralization. Find the % of free SO ₃ in the sample of oleum.	SES, Di
	Q14.	1.64 g of a mixture of $CaCO_3$ and $MgCO_3$ was dissolved in 50 mL of 0.8 M HCl. The excess of acid required 16 mL of 0.25 M NaOH for neutralization. Calculate the percentage of $CaCO_3$ and $MgCO_3$ in the sample.	TEKO CLAS

- 1.5 g of chalk were treated with 10 ml of 4N HCl. The chalk was dissolved and the solution made to \ge Q15.
- 1.5 g of chark were treated with 10 m of 4N FICI. The chark was dissolved and the solution made to 100 ml 25 ml of this solution required 18.75 ml of 0.2 N NaOH solution for complete neutralisation. Calculate the percentage of pure CaCO₃ in the sample of chalk? 2.013g of a commercial sample of NaOH containing Na₂CO₃ as an impurity was dissolved to give 250ml solution. A 10ml portion of this solution required 20ml of $0.1 \text{ N H}_2\text{SO}_4$ for complete neutralization. Calculate % by weight of Na₂CO₃. Exactly 50 ml of Na₂CO₃ solution is equivalent to 56.3 ml of 0.102 N HCl in an acid-base neutralisation. How many gram CaCO₃ would be precipitated if an excess of CaCl₂ solution were added to 100 ml of this Na₂CO₃ solution. Q16.
- Q17. this Na₂CO₃ solution.
- Q18. 6g mixture of NH₄Cl and NaCl is treated with 110mL of a solution of caustic soda of 0.63N. The solution was then boiled to remove NH₂. The resulting solution required 48.1mL of a solution of 0.1N HCl. What is % composition of mixture?
- BHOPAL Q19. Calculate the number of gm(a) of hydrochloric acid, (b) of potassium chloride in 1 litre of a solution, 25cc of which required 21.9cc of N/10 sodium hydroxide for naturalization and another and addition of an excess of powdered chalk, required 45.3cc of N/10 silver nitrate for the complete
- 2.5 gm of a mixture containing NaHCO₃, Na₂CO₃ and NaCl is dissolved in 100 ml water and its 50 ml \Re Q20. portion required 13.33 ml 1.0 N HCl solution to reach the equivalence point. On the other hand its other 50 ml portion required 19 ml 0.25 M NaOH solution to reach the equivalence point. Determine mass % \bullet of each component? (Na₂CO₃ = 36.38%, NaHCO₃ = 31.92%, NaCl = 31.7%) 000 000,

Redox Titration

- PH: (0755)- 32 It requires 40.05 ml of 1M Ce⁴⁺ to titrate 20ml of 1M Sn²⁺ to Sn⁴⁺. What is the oxidation state of the Q21. cerium in the product.
- Q22. A volume of 12.53 ml of 0.05093 M SeO₂ reacted with exactly 25.52 ml of 0.1M CrSO₄. In the reaction, Cr^{2+} was oxidized to Cr^{3+} . To what oxidation state was selenium converted by the reaction.
- Sir) Q23. A 1.0g sample of H_2O_2 solution containing x % H_2O_2 by mass requires x cm³ of a KMnO₄ solution for Ż. complete oxidation under acidic conditions. Calculate the normality of KMnO₄ solution.
- Ľ Q24. Metallic tin in the presence of HCI is oxidized by K₂Cr₂O₇ to stannic chloride, SnCl₄. What volume of ທ່ deci-normal dichromate solution would be reduced by 1g of tin.
- FREE Download Study Package from website: www.tekoclasses.com KARIYA Q25. Calculate the mass of oxalic acid which can be oxidized by 100ml of M MnO_4^- solution, 10ml of which is capable of oxidizing 50ml of 1N I⁻ of I_2 .
 - Exactly 40ml of an acidified solution of 0.4M iron(II) ion of titrated with KMnO₄ solution. After addition Q26. S permangnate solution.
 - Q27. The iodide content of a solution was determined by the titration with Cerium(IV) sulfate in the presence Director of HCl, in which I⁻ is converted to ICl. A 250ml sample of the solution required 20ml of 0.058N Ce⁴⁺ solution. What is the iodide concentration in the original solution in gm/lt.
 - LASSES. Q28. Potassium acid oxalate $K_2C_2O_4 \cdot 3HC_2O_4 \cdot 4H_2O$ can be oxidized by MnO_4^- in acid medium. Calculate the volume of 0.1M KMnO₄ reacting in acid solution with one gram of the acid oxalate.
 - 5g sample of brass was dissolved in one litre dil. H_2SO_4 . 20 ml of this solution were mixed with KI, liberating I_2 and Cu⁺ and the I_2 required 20 ml of 0.0327 N hypo solution for complete titration. Calculate the percentage of Cu in the alloy. Q29. the percentage of Cu in the alloy.

- Q30.
- 1.44g pure FeC_2O_4 was dissolved in dil. HCl and solution diluted to 100 mL. Calculate volume of 0.01M KMnO₄ required to oxidize FeC_2O_4 solution completely. 0.84 g iron ore containing x percent of iron was taken in a solution containing all the iron in ferrous condition. The solution required x ml of a dichromatic solution for oxidizing the iron content to ferric state. Calculate the strength of dichromatic solution. 0.5M KMnO₄ solution completely reacts with 0.05M FeC₂O₄ solution under acidic conditions where the products are Fe³⁺, CO₂ and Mn²⁺. The volume of FeC₂O₄ used is 125 ml. What volume of KMnO₄ was used. Q31.
- Q32. Page was used.
- A solution is made by mixing 200 ml of $0.1M \text{ FeSO}_4$, 200 gm of $0.1M \text{ KMnO}_4$ and 600 ml $1M \text{ HClO}_4$. Q33. A reaction occurs in which Fe^{2+} is converted to Fe^{3+} & MnO_4^- to Mn^{2+} in acid solution. Calculate the concentration of each ion.
- To 100ml of KMnO₄ solution containing 0.632 gm of KMnO₄, 200 ml of SnCl₂ solution containing 2.371 gm is added in presence of HCl. To the resulting solution excess of HgCl₂ solution is added all at $\frac{1}{2}$ Q34. once. How many gms of Hg₂Cl₂ will be precipitated. (Mn = 55; K = 39; Sn = 118.7; Hg = 201)

Q35. A 1.0 g sample of Fe₂O₃ solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100.0 mL. An aliquot of 25.0 mL of this solution requires 17.0 mL of 0.0167 M solution of an oxidant for titration. Calculate the number of moles of electrons taken up by the oxidant in the reaction of the above titration.

- 0 A mixture of FeO and Fe₂O₂ is reacted with acidified KMnO₄ solution having a concentration of 0.2278 Q36. 000 M, 100 ml of which was used. The solution was then titrated with Zn dust which converted Fe³⁺ of the solution to Fe²⁺. The Fe²⁺ required 1000 ml of 0.13 M K₂Cr₂O₇ solution. Find the % of FeO & Fe₂O₃
- Q37. 2 gms of FeC₂O₄ are made to react in acid solution with 0.25 M KMnO₄ solution. What volume of S KMnO₄ solution would be required. The resulting solution is treated with excess of NH₄Cl and NH₄OH 0755)solution. The precipitated Fe(OH), is filtered off, washed and ignited. What is the mass of the product obtained. (Fe = 56)

FREE Download Study Package from website: www.tekoclasses.com The neutralization of a solution of 1.2 g of a substance containing a mixture of H₂C₂O₄. 2H₂O, KHC₂O₄. Q38. Sir H₂O and different impurities of a neutral salt consumed 18.9 ml of 0.5 N NaOH solution. On titration with KMnO₄ solution, 0.4 g of the same substance needed 21.55 ml of 0.25 N KMnO₄. Calculate the \checkmark Ż % composition of the substance.

KARIYA (S Q39. A 1.0 g sample containing BaCl₂. 2H₂O was dissolved and an excess of K₂CrO₄ solution added. After a suitable period, the BaCrO₄ was filtered, washed and redissolved in HCl to convert CrO_4^{2-} to $Cr_2O_7^{2-}$. An excess of KI was added, and the liberated iodine was titrated with 84.7 mL of 0.137 M sodium thiosulphate. Calculate the percent purity of BaCl₂. 2H₂O. ż

Q40.

Q41. ml of 1 – N HCl was required this time. Calculate the amount of Na₂CO₃ & NaHCO₃. TEKO

- Q42.
- A solution contains a mix of Na₂CO₃ and NaOH. Using Ph as indicator 25ml of mix required 19.5 ml of 0.995 N HCl for the end point. With MeOH, 25 ml of the solution required 25ml of the same HCl for the end point. Calculate gms/L of each substance in the mix . 200ml of a solution of mixture of NaOH and Na₂CO₃ was first titrated with Ph and $\frac{N}{10}$ HCl. 17.5 ml of HCl was required for end point. After this MeOH was added and 2.5 ml of some HCl was again required for next end point. Find out amounts of NaOH and Na₂CO₃ in the mix. Q43.
- What is the concentration of a solution of orthophosphoric acid(gm H_3PO_4 per litre), 25cc of which Q44. required 18.8cc of N sodium hydroxide for naturalization in the presence of phenolphthalein as indicator?
- 2gm of mixture of hydrated sodium carbonate Na₂CO₃. 10H₂O, and source control of the solution was the source of the solution of the solution of the solution of the source of the solution Q45.
- Q46. A solution contains Na₂CO₃ and NaHCO₃. 10ml of this requires 2ml of 0.1M H₂SO₄ for neutralisation 58881 using Ph indicator. MeOH is then added when a further 2.5 ml of 0.2 M H₂SO₄ was needed. Calculate strength of Na₂CO₃ and NaHCO₃.
- A sample containing Na₂CO₃ & NaOH is dissolved in 100ml solution. 10ml of this solution requires 25ml of 0.1N HCl when Ph is used as indicator. If MeOH is used as indicator 10ml of same solution Q47. requires 30ml of same HCl. Calculate % of Na₂CO₃ and NaOH in the sample.
- What is the concentration of a solution of sodium carbonate (expressed as gm. of anhydrous sodium carbonate per litre). 25cc of which require 1.102 Q48. 8 carbonate per litre), 25cc of which required 18.3cc of 0.12N sulphuric acid for neutralization, 32 phenolphthalein being used as an indicator?
- When the salt, $\text{KNaC}_4\text{H}_4\text{O}_6$. $4\text{H}_2\text{O}$ (molecular weight 282) is ignited, there is a residue of sodium $\frac{1}{6}$ Q49. carbonate and potassium carbonate. A gram of this salt gave a residue which required 63.8cc of N/10 S hydrochloric acid for neutralization, methyl orange being used as indicator. Calculate the percentage purity of the salt. Sir)
- Q50. Calculate (i) the number of gm. of anhydrous sodium carbonate, (ii) the number of gm. of sodium ż bicarbonate, present together in one litre of a solution. 25cc of this solution required 11.8cc of N/10 hydrochloric acid for naturalization when phenolphthalein was used as indicator and 31.0cc of N/10 hydrochloric acid when methyl orange was used as indicator. KARIYA

Back Titration

- 50gm of a sample of Ca(OH), is dissolved in 50ml of 0.5N HCl solution. The excess of HCl was titrated d Q51. HAG with 0.3N – NaOH. The volume of NaOH used was 20cc. Calculate % purity of Ca(OH),.
- SC Q52. One gm of impure sodium carbonate is dissolved in water and the solution is made up to 250ml. To 50ml of this made up solution, 50 ml of 0.1 N - HCl is added and the mix after shaking well required 10 ml of 0.16N – NaOH solution for complete titration. Calculate the % purity of the sample.
- What amount of substance containing 60% NaCl, 37% KCl should be weighed out for analysis so that Q53. after the action of 25 ml of 0.1N AgNO₃ solution, excess of Ag⁺ is back titrated with 5 ml of NH_4SCN
- solution? Given that 1 ml of $NH_4SCN = 1.1$ ml of $AgNO_3$. 5g of pyrolusite (impure MnO_2) were heated with conc. HCl and Cl_2 evolved was passed through Q54. excess of KI solution. The iodine liberated required 40 mL of $\frac{N}{10}$ hypo solution. Find the % of MnO₂ in $\frac{9}{10}$ the pyrolusite.

- 1.64 g of a mixture of CaCO₃ and MgCO₃ was dissolved in 50 mL of 0.8 M HCl. The excess of acid \ge Q55.
- 1.64 g of a mixture of CaCO₃ and MgCO₃ was dissolved in 50 mL of 0.8 M HCl. The excess of acid required 16 mL of 0.25 M NaOH for neutralization. Calculate the percentage of CaCO₃ and MgCO₃ in the sample. A mixture of CaCl₂ and NaCl weighing 2.385g was dissolved in water and treated with a solution of sodium oxalate which produces a precipitate of calcium oxalate. The precipitate was filtered from the mixture and then dissolved in HCl to give oxalic acid which when titrated against 0.2M KMnO₄ consumed 19.64 mL of the latter. What was percentage by mass of CaCl₂ in the original sample? Q56.
- 1ge 20 -An acid solution of a KReO₄ sample containing 26.83 mg of combined rhenium was reduced by Q57. passage through a column of granulated zinc. The effluent solution, including the washings from the column, was then titrated with 0.10 N KMnO₄. 11.45 mL of the standard permanganate was required for the re-oxidation of all the rhenium to the perrhenate ion, ReO_4^- . Assuming that rhenium was only element reduced. What is the oxidation state to which rhenium was reduced by the Zn column. BHOPAL (Atomic mass of Re = 186.2)
- H_2O_2 is reduced rapidly by Sn^{2+} , the products being Sn^{4+} & water. H_2O_2 decomposes slowly at Q58. room temperature to yield O_2 & water. Calculate the volume of O_2 produced at 20°C & 1.00 atm when 200 g of 10.0 % by mass H_2O_2 in water is treated with 100.0 ml of 2.00 M Sn²⁺ & then the mixture is allowed to stand until no further reaction occurs. A mixture containing As $_2O_3$ and As $_2O_5$ required 20.1 ml of 0.05N iodine for titration. The resulting solution is then acidified and excess of KI was added. The liberated iodine required 1.1113g hypo (Na S O_2 5H O_2) for complete reaction. Calculate the mass of the mixture. The reactions are
- Q59. (Na₂S₂O₃. 5H₂O) for complete reaction. Calculate the mass of the mixture. The reactions are

$$\begin{array}{rcl} \operatorname{As_2O_3} + 2\mathrm{I_2} + 2\mathrm{H_2O} & \rightarrow & \operatorname{As_2O_5} + 4\mathrm{H^+} + 4\mathrm{I^-} \\ \operatorname{As_2O_5} + 4\mathrm{H^+} + 4\mathrm{I^-} & \rightarrow & \operatorname{As_2O_3} + 2\mathrm{I_2} + 2\mathrm{H_2O} \end{array}$$

Q60. A sample of $MnSO_4$. 4H₂O is strongly heated in air which gives Mn_3O_4 as residue.

(i) The residue is dissolved in 100 ml of 0.1N FeSO, containing H₂SO,

(ii) The solution reacts completely with 50ml of KMnO₄ solution.

(iii) 25 ml of KMnO₄ solution used in step (ii) requires 30 ml of 0.1N FeSO₄ solution for the complete reaction.

Find the weight of MnSO, 4H₂O in the sample.

FREE Download Study Package from website: www.tekoclasses.com

PROFICIENCY TEST

		<u>PROFICIENCY TEST</u>	TRY
	Q.1	Fill in the blanks with appropriate items :	IOME
	1.	The number of water molecules in 0.5 mol of barium chloride dihydrate is	OICH
	2.	20ml of 0.1 M $H_2C_2O_4 \cdot 2H_2O$ (oxalic acid) solution contains oxalic acid equal to moles.	LS6
	3.	The volume of 1.204×10^{24} molecules of water at 4°C is	21 of 2
	4.	$0.2 \text{ mol of ozone } (O_3) \text{ at N.T.P. will occupy volume } L.$	Page 2
	5.	The balancing of chemical equation is based upon	
	6.	2 gm of hydrogen will have same number of H atoms as are there in g hydrazine (NH ₂ -NH ₂).	
в	7.	The mass of x atoms of element = $\frac{\dots \dots x}{N_A}$.	BHOPAL
asses.co	8.	The moles of x atoms of a triatomic gas = $\frac{x}{N_A} \times $	58881 .
socl	9.	The amount of Na_2SO_4 which gives 9.6 gm of SO_4^{2-} is	930
v.tel	10.	The 44 mg of certain substance contain 6.02×10^{20} molecules. The molecular mass of the substance is	0 98
WWM	11.	The mass of 1×10^{22} molecules of CuSO ₄ . 5H ₂ O is	0000
vebsite	12.	The atomic mass of iron is 56. The equivalent mass of the metal in FeCl_2 is and that in FeCl_3 is	i)- 32 0(
from w	13.	The sulphate of a metal M contains 9.87% of M. The sulphate is isomorphous with $ZnSO_4$.7H ₂ O. The atomic mass of M is	4: (0755
kage f	14.	A binary compound contains 50% of A (at. mass = 16) & 50% B (at. mass = 32). The empirical formula of the compound is	Sir) PH
dy Pac	15.	10.6 g of Na_2CO_3 react with 9.8 g of H_2SO_4 to form 16 g of Na_2SO_4 & 4.4 g CO_2 . This is in accordance with the law of	S. R. K.
Stu	16.	3 g of a salt (m. wt. 30) are dissolved in 250 ml of water. The molarity of solution is	YA (;
mload	17.	0.5 mole of $BaCl_2$ are mixed with 0.2 mole of Na_3PO_4 the maximum number of mole of $Ba_3(PO_4)_2$ formed are	RARI
Dow	18.	The Eq. weight of Na_2HPO_4 when it reacts with excess of HCl is	AG F
EE	19.	The mole fraction of solute in 20% (by weight) aqueous H_2O_2 solution is	SUH
FR	20.	A metallic oxide contains 60% of the metal. The Eq. weight of the metal is	or :
	21.	The number of gm of anhydrous Na_2CO_3 present in 250 ml of 0.25 N solution is	rect
	22.	ml of $0.1 \text{ MH}_2\text{SO}_4$ is required to neutralize 50 ml of 0.2 M NaOH solution.	S. Di
	23.	The number of mole of water present in 90 g H_2O are	SSE
	24.	The concentration of K^+ ion in 0.2 M $K_2 Cr_2 O_7$ solution would be	CLA
	25.	280 ml of sulphur vapour at NTP weight 3.2 g. The Mol. formula of the sulphur vapour is	TEKO

	Q.2	True or False Statements :							
	1.	Equal volumes of helium and nitrogen under similar conditions have equal number of atoms.	MET						
	2.	The smallest particle is a substance which is capable in independent existence is called an atom.	CHIC						
	3.	The number of formula units in 0.5 mole of KCl is 6.02×10^{23} .							
	4.	22.4 L of ethane gas at S.T.P. contains H atoms as are present in 3 gram molecules of dihydrogen.	of 29						
	5.	Molarity of pure water is 55.5.	ge 22						
	6.	A 20% solution of KOH (density = 1.02 g/ml) has molarity = 3.64 .	Pa						
	7.	a mixture of 1 g C_6H_6 & 1 g C_7H_8 , the mole fraction of both are same.							
www.tekoclasses.com	8.	1 mole of $C_{12}H_{22}O_{11}$ contains 22 hydrogen atoms.							
	9.	$\text{KClO}_4 \& \text{KMnO}_4 \text{ are isomorphous in nature.}$							
	10.	Mass of 3.01×10^{23} molecules of of methane is 8 gm.	- -						
	11.	A hydrocarbon contains 86% C. 448 ml of the hydrocarbon weighs 1.68 g at STP. Then the hydrocarbon is an alkene.	30 5888						
	12.	$6.023 \times 10^{54} e^{-s}$ weigh one kg.	9893						
	13.	An oxide of metal M has 40% by mass of oxygen. Metal M has relative atomic mass of 24. The empirical formula of the oxide is MO.	00, 0						
ebsite:	14.	5 g of a crystalline salt when rendered anhydrous lost 1.8 g of water. The formula weight of the anhydrous salt is 160. The number of molecules of water of crystallisation in the salt is 5.	- 32 00 (
n W	15.	Number of valence e^{-s} in 4.2 g of N ³⁻ is 24 N _A .	755)						
froi	16.	The equivalent mass of $KMnO_4$ in alkaline medium is molar mass divided by five.	о) Н						
age	17.	The equivalent mass of $Na_2S_2O_3$ in its reaction with I_2 is molar mass divided by two.							
Pack	18.	In a reaction, H_2MoO_4 is changed to MoO_2^+ . In this case, H_2MoO_4 acts as an oxidising agent.							
dy I	19.	KBrO ₃ acts as a strong oxidising agent. It accepts 6 electrons to give KBr.	S. R.						
Stu	20.	0.1 M sulphuric acid has normality of 0.05 N.	YA (
load	21.	The reaction, $2H_2O_2 \longrightarrow 2H_2O + O_2$ is not an example of a redox reaction.	KARI						
own	22.	The disproportionation reaction, $2Mn^{3+} + 2H \cap \longrightarrow MnO + Mn^{+2} + 4H^{+}$	В.						
ΕĎ		is an example of a redox reaction.	JHAC						
RE	23.	The oxidation number of hydrogen is always taken as $+ 1$ in its all compounds.	r : Sl						
H	24.	The increase in oxidation number of an element implies that the element has undergone reduction.							
	25.	The oxidation state of oxygen atom in potassium super oxide is $-\frac{1}{2}$.	SES, Dir						
			CLAS						
			теко						

- Q2. Q3. Q4. FREE Download Study Package from website: www.tekoclasses.com Q5. Q6. Q7. Q8. Q9..
 - Q10. 0.6213 g of sample contains an unknown amount of As₂O₂. The sample was treated with HCl resulting Director in formation of AsCl₂(g) which was distilled into a beaker of water. The hydrolysis reaction is as follows

$$AsCl_3 + 2H_2O \rightarrow HAsO_2 + 3H^+ + 3Cl^-$$
.

TEKO CLASSES, The amount of HAsO₂ was determined by titration with 0.04134 M I₂, requiring 23.04 mL to reach the equivalence point. The redox products in the titration were H_3AsO_4 and I⁻. Find the amount of KMnO₄ needed to oxidize As in As₂O₃ to its maximum possible oxidation state in acidic medium.

- chloride, aluminium chloride and hydrogen. The evolved hydrogen collected over mercury at 0°C has a volume of 1.2 litres at 0.92 atm pressure. Calculate the composition of the alloy.
- 10 gm of a mixture of anhydrous nitrates of two metal A & B were heated to a constant weight & gave 5.531 gm of a mixture of the corresponding oxides. The equivalent weights of A & B are 103.6 & 31.8 respectively. What was the percentage of A in the mixture.
- 58881, BHOPAI 50ml of a solution, containing 0.01 mole each Na₂CO₃, NaHCO₃ and NaOH was titrated with N-HCl. What will be the titre readings if
 - (a) only Ph is used as indicator.
 - (b) only MeOH is used as indicator from the beginning.
 - (c) MeOH is added after the first end point with Ph.
- Chrome alum K_2SO_4 . $Cr_2(SO_4)_3$. 24 H_2O is prepared by passing SO_2 gas through an aqueous solution of $K_2Cr_2O_7$ acidified with dilute sulphuric acid till the reduction is complete. The alum is crystallized **8** followed by filtration/centrifugation. If only 90% of the alum can be recovered from the above process, how much alum can be prepared from 10kg of K₂Cr₂O₂? Give the number of moles of electrons supplied 000 by SO₂ for reducing one mole of $K_2Cr_2O_7$.
- 25 mL of a solution containing HCl was treated with excess of M/5 KIO, and KI solution of unknown concentration where I, liberated is titrated against a standard solution of 0.021M Na, S, O, solution 🖗 155) whose 24 mL were used up. Find the strength of HCl and volume of KIO₃ solution consumed.
 - A 10g sample of only CuS and Cu₂S was treated with 100 mL of 1.25 M K,Cr,O₇. The products E obtained were Cr³⁺, Cu²⁺ and SO₂. The excess oxidant was reacted with 50 mL of Fe²⁺ solution. 25 ml of the same Fe²⁺ solution required 0.875M acidic KMnO₄ the volume of which used was 20 mL. Find Sir) the % of CuS and Cu_2S in the sample. ¥.
- A substance of crude copper is boiled in H₂SO₄ till all the copper has reacted. The impurities are inert to the acid. The SO₂ liberated in the reaction is passed into 100 mL of 0.4 M acidified KMnO₄. The \dot{g} solution of KMnO₄ after passage of SO₂ is allowed to react with oxalic acid and requires 23.6 mL of KARIYA 1.2 M oxalic acid. If the purity of copper is 91%, what was the weight of the sample.
 - A 1.87gm. sample of chromite ore(FeO.Cr₂O₂) was completely oxidized by the fusion of peroxide. The fused mass was treated with water and boiled to destroy the excess of peroxide. After acidification the sample was treated with 50ml. of 0.16M Fe²⁺. In back titration 2.97 ml of 0.005 M barium dichromate was required to oxidize the excess iron (II). What is the percentage of chromite in the sample?

Ż

SUHAG

- A sample of steel weighing 0.6 gm and containing S as an impurity was burnt in a stream of O_2 , when S was converted to its oxide SO_2 . SO_2 was then oxidized to SO_4^{--} by using H_2O_2 solution containing 30ml of 0.04 M NaOH. 22.48 ml of 0.024 M HCl was required to neutralize the base remaining after oxidation. Calculate the % of S in the sample. Sulfur dioxide is an atmospheric pollutant that is converted to sulfuric acid when it reacts with water vapour. This is one source of acid rain, one of our most pressing environmental problems. The sulfur dioxide content of an air sample can be determined as follows. A sample of air is bubbled through an aqueous solution of hydrogen peroxide to convert all of the SO_2 to H_2SO_4 $H_2O_2 + SO_2 \longrightarrow H_2SO_4$ Q11.
- O12.

Titration of the resulting solution completes the analysis. In one such case, analysis of 1550 L of Los Angeles air gave a solution that required $5.70 \text{ ml of } 5.96 \text{ x } 10^{-3} \text{M}$ NaOH to complete the titration. Determine the number of grams of SO₂ present in the air sample.

1.4 g of a complex $[Co(NH_3)_x]$ Cl₃ was treated with 50 mL of 2N NaOH solution and boiled. Ammonia gas evolved was passed through 50 mL of 1N H₂SO₄. After the reaction was over, excess acid required Q13. 37.2 mL of 0.5 N NaOH. Calculate

- (i) The percentage of ammonia in the sample. (ii) The value of x in the formula.
 3.3 gm of a sample of Anhydrous CuSO₄ was dissolved in water and made to 250ml. 25 ml of this solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Solution after taking usual precautions was treated with a little excess of KI solution. Q14. Cu₂I₂ and iodine was evolved. The iodine so evolved required 24.6 ml of hypo solution containing 20gm 0 of $(Na_{3}S_{2}O_{3} \cdot 5H_{2}O)$ per litre. What is the purity of $CuSO_{4}$ solution.
- 000 Q15. A certain sample of coal contained some iron pyrite (FeS₂) – a pollution causing impurity. When the coal was burned iron(II) was oxidised and SO_2 was formed. The SO_2 was reacted with NaOH when $\bigcup_{n=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i=1$ sodium sulphite and water was formed. On a particular fay 103 kg of coal was burned and it required 4 litres of 5M NaOH for the treatment of SO2. What was the percentage of pyrite in the coal. What was the percentage of sulphur in the coal.
- Calculate the % of MnO, in a sample of pyrolusite ore, 1.5 g which was made to react with 10 g. of Q16. Ч Mohr's salt (FeSO₄.(NH₄)₂SO₄. 6H₂O) and dilute H₂SO₄. MnO₂ was converted Mn²⁺. After the reaction the solution was diluted to 250 ml and 50 ml of this solution, when titrated with 0.1 N $K_2Cr_2O_7$, required 10 ml of the dichromate solution. ¥.

FREE Download Study Package from website: www.tekoclasses.com Chlorine dioxide (ClO₂), has been used as a disinfectant in air conditioning systems. It reacts with water Q17. ຍ່ according to the reaction: $ClO_2 + H_2O \longrightarrow HClO_3 + HCl$ In an experiment, a 10.0 L sealed flask containing ClO_2 and some inert gas at 300 K and 1.0 atmosphere pressure is opened in a bath containing excess of water and all ClO_2 is reacted quantitatively. The resulting solution required 200 mL 0.9 M NaOH solution for naturalization. Determine mole fraction of

resulting solution required 200 mL 0.9 M NaOH solution for naturalization. Determine mole fraction of $\ ClO_2$ in the flask. Consider the following reactions: $XeF_2 + F_2 \longrightarrow XeF_6$ and $XeF_6 + (-CH_2-CH_2)_n \longrightarrow (-CH_2-CH_2-)_n \longrightarrow (-CH_2-CH_2-) + HF + XeF_4$ Determine mass of F_2 (g) required for preparation of 1.0 kg fluorinated polymer. 2.0 g of a sample containing NaCl, NaBr and some inert impurity is dissolved in enough water and treated with excess of AgNO₃ solution. A 2.0 g of precipitate was formed. Precipitate on shaking with acueous NaBr gain 0.76 g of weight. Determine mass of NaCl in the write of the prime of the Q18.

- Q19.
- aqueous NaBr gain 0.76 g of weight. Determine mass percentage of NaCl in the original sample. 2.725 g of a mixture of $K_2C_2O_4$, KHC₂O₄ and $H_2C_2O_4$ · 2H₂O is dissolved in 100 mL H₂O and its 10mL portion is titrated with 0.1 N HCl solution. 20 mL acid was required to reach the equivalence point. In Q20. another experiment, 10mL portion of the same stock solution is titrated with 0.1 N KOH solution. 20 mL of base was required to reach the equivalence point. Determine mass percentage of each component in the mixture.

- A 0.127 g of an unsaturated oil was treated with 25 mL of 0.1 M ICl solution. The unreacted ICl was 🔁 Q21.
- then treated with excess of KI. Liberated iodine required 40 mL 0.1 M hypo solution. Determine mass of I₂ that would have been required with 100.0 g oil if I₂ were used in place of ICl. The CO in a 20.3 L sample of gas was converted to CO₂ by passing the gas over iodine pentoxide heated to 150°C. I₂O₅(s) + 5CO (g) \longrightarrow 5CO₂(g) + I₂(g). The iodine distilled at this temperature and collected in a vessel containing 8.25 ml of 0.011 M Na₂S₂O₃. The excess Na₂S₂O₃ was back titrated with 2.16 ml of 0.00047 M L solution. Calculate the number of milligrams of CO per litra of the sample Q22. with 2.16 ml of 0.00947 MI, solution. Calculate the number of milligrams of CO per litre of the sample.
- Q23. The chromate ion may be present in waste from a chrome plating plant. It is reduced to insoluble chromium 🚆 hydroxide by dithionate ion in basic medium $S_2O_4^{2-} + Cr_2O_4^{2-} \longrightarrow SO_3^{2-} + Cr(OH)_3$. 100 ml of water require 387 gm of Na₂S₂O₄. Calculate molarity and normality of CrO₄²⁻ in waste water. Also express concentration in ppm of $Na_{2}CrO_{4}$.
- A gas mixture was passed at the rate of 2.5 L/min. through a solution of NaOH for a total of 64 BHOPAI Q24. minutes. The SO₂ in the mixture was retained as sulphite ion: SO₂(g) + 2OH⁻ \longrightarrow SO₃²⁻ + H₂O. After acidification with HCl, the sulphite was titrated with 4.98 mL of 0.003125 M KIO₃.
- $IO_3^- + SO_3^- + HCl \longrightarrow ICl_2^- + SO_4^{2-} + H_2O$. If density of the mixture is 1.2 gm/lt, calculate concentration of SO_2 in ppm. The arsenic in a 1.223 gm sample of a pesticide was converted to H_3AsO_4 by suitable treatment. The acid was then neutralized and exactly 40 ml of 0.08 M AgNO₃ was added to precipitate the arsenic quantitavely as Ag₂AsO₄. The excess Ag⁺ in the filterate required 11.27 ml of 0.1 M KSCN as Q25. quantitavely as Ag, AsO, . The excess Ag+ in the filterate required 11.27 ml of 0.1 M KSCN as 0 $Ag^+ + SCN^- \longrightarrow AgSCN(s)$ Calculate the percent As_2O_3 in the sample. ($As_2O_3 = 198$)
- 5 gm of bleaching powder was suspended in water and volume made up to half a litre. 20 ml of this **8** suspension when acidified with costic cost to be the sub-Q26. suspension when acidified with acetic acid and treated with excess of potassium iodide solution liberated iodine which required 20 ml of a decinormal hypo solution for titration. Calculate percentage of available 🖁
- chlorine in bleaching powder. 25 mL of a $0.107M H_3PO_4$ was titrated with a 0.115M solution of a NaOH solution to the end point **b** Q27. identified by the colour change of the indicator, bromocresol green. This required 23.1 mL. The titration Sir) PH: was repeated using phenolphthalein indicator. This time, 25 mL of same H₃PO₄ solution required 46.8 mL of same NaOH solution. What is the coefficient 'n' in the equation ¥.

$$H_3PO_4 + nOH^- \rightarrow nH_2O+[H_{(3-n)}PO_4]^{n-}$$
 for each reaction?

Q28. 1 gm sample of KClO₃ was heated under such conditions that a part of it decomposed according to the $2\text{KClO}_3 \longrightarrow 2\text{KCl} + 3\text{O}_2$ equation (1)and remaining underwent change according to the equation. (2) 4KClO₃ \longrightarrow 3 KClO₄ + KCl If the amount of O_2 evolved was 146.8 ml at S.T.P., calculate the % of weight of KClO₄ in the residue.

(S. R.

KARIYA

Methanol Isobutene MTBE CH_4O C_4H_8 $C_5H_{12}O$ Approximately 2 billion pounds of MTBE are produced each year at a cost of about 10 ¢ per pound. Agent for the answer of the test of tes Q29.

$$C H_{3}C H_{2}C = CH_{2} \xrightarrow{H_{2}SO_{4}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}$$

Methanol	Isobutene	MTBE
CH_4O	C_4H_8	C ₅ H ₁₂ O

Assume that you are a chemist working for a company that sold 750 million pounds of MTBE last year. (a) If the synthesis has a reaction yield of 86%, how much isobutene was used to produce the MTBE?

(b) You have improved the synthesis of MTBE so that the yield of the reaction increases from 86% to 93%. If the company uses the same mass of isobutene for next year's production, how many pounds of MTBE will the company cell if it uses your paw process?

(c) Assuming that the price of MTBE does not change, how much more money will the company make next year because of your work? A mixture of NaCl and NaBr weighing 3.5084 gm was dissolved and treated with enough AgNO₃ to precipitate all of the chloride and bromide as AgCl and AgBr. The washed precipitate was treated with KCN to solubilize the silver and the resulting solution was electrolyzed. The equations are : NaCl + AgNO₃ \longrightarrow AgCl + NaNO₃ NaBr + AgNO₃ \longrightarrow AgBr + NaNO₃ Q30.

 $NaCl + AgNO_{3} \longrightarrow AgCl + NaNO_{3}$ $NaBr + AgNO_{3} \longrightarrow AgBr + NaNO_{3}$ $AgCl + 2KCN \longrightarrow KAg(CN)_{2} + KCl$ $AgBr + 2KCN \longrightarrow KAg(CN)_2 + KBr$ $4\text{KAg(CN)}_2 + 4\text{KOH} \longrightarrow 4\text{Ag} + 8\text{KCN} + \text{O}_2 + 2\text{H}_2\text{O}$

After the final step was complete, the deposit of metallic silver weighed 5.5028 gm. What was the composition of the initial mixture.

- Q31. Phosphorus is essential for plant growth, and it is often the limiting nutrient in aqueous ecosystems. However, too much phosphorus can cause algae to grow at an explosive rate. This process, known as eutrophication, robs the rest of the ecosystem of essential oxygen, often destroying all other aquatic life. One source of aquatic phosphorus pollution is the HPO_4^{2-} used in detergents in sewage plants. The simplest way to remove HPO_4^{2-} is to treat the contaminated water with lime, CaO, which generates Ca^{2+} and OH ions in water. The phosphorus precipitates as $Ca_{5}(PO_{4})_{3}OH$.
- Ca²⁺ and OH⁻ ions in water. The phosphorus precipitates as Ca₅ (PO₄)₃OH.
 (a) Write the balanced equation for CaO dissolving in water.
 (b) Write the balanced equation for the precipitation reaction.
 (c) How many kilograms of lime are required to remove all the phosphorus from a 1.00 x 10⁴L holding get a 1.00 x 10⁴L tank filled with contaminated water that is 0.0156 M in HPO₂²⁻?
- (0755) It was desired to neutralize a certain solution prepared by mixing KCl and hydrobromic acid. Titration of Q32. 10ml of this solution with 0.1M AgNO₃ solution required 50ml of the latter for the complete precipitation of the halides. The resulting precipitate when filtered, washed and dried weighed 0.771 gm. How much 0.1M NaOH must have been used for the potter light in the filtered. Sir) 0.1M NaOH must have been used for the neutralization of 10ml of the solution.
- ¥ Q33. The element Se, dispersed in a 5.0 ml sample of detergent for dandruff control, was determined by Ż suspending the sample in warm, ammonical solution that contain 45.0 ml of 0.020 M AgNO₃. KARIYA (S. $6Ag^+ + 3Se(s) + 6NH_3 + 3H_2O \longrightarrow 2Ag_2Se(s) + Ag_2SeO_3(s) + 6NH_4^+$ The mixture was next treated with excess nitric acid which dissolves the Ag₂SeO₃ but not the Ag₂Se. The Ag⁺ from the Ag₂SeO₃ and excess AgNO₃ consumed 16.74 ml of 0.0137 N KSCN in a Volhard titration. How many milligrams of Se were contained per millilitre of sample. ż
- Q34. In the presence of fluoride ion, Mn^{2+} can be titrated with MnO_4^{-} , both reactants being converted to a complex **Director : SUHAG** of Mn(III). A 0.545 g sample containing Mn_3O_4 was dissolved and all manganese was converted to Mn^{2+} . Titration in the presence of fluoride ion consumed 31.1 ml of KMnO₄ that was 0.117 N against oxalate.
 - (a) write a balanced chemical equation for the reaction, assuming that the complex is MnF_4^{-} .
 - (b) what was the % of Mn_2O_4 in the sample?

Q35. $CuSO_4$ reacts with KI in an acidic medium to liberate $I_2 2CuSO_4 + 4KI \longrightarrow Cu_2I_2 + 2K_2SO_4 + I_2$. Mercuric periodate $Hg_5(IO_6)_2$ reacts with a mixture of KI & HCl according to the following equation: **CLASSES** $Hg_{5}(IO_{6})_{2} + 34KI + 24 HCl \longrightarrow 4K_{2}HgI_{4} + 8I_{2} + 24 KCl + 12 H_{2}O$ The liberated iodine is titrated against Na₂S₂O₃ solution; 1 ml of which is equivalent to 0.0499 gm of CuSO₄·5H₂O. What volume in ml of Na₂S₂O₃ solution will be required to react with the I₂ liberated from TEKO $0.7245 \text{ gm of Hg}_{5}(IO_{6})_{2}$?

Given Mol. wt. of $Hg_5(IO_6)_2 = 1448.5 \text{ gm/mol}$; Mol. wt. of $CuSO_4 \cdot 5H_2O = 249.5 \text{ gm/mol}$

EASY RIDE Acid Base Titration

	Q1. 0.3 Q6. 0.0 Q11. K Q14. N Q18. % Q19. 3 Q20. 0	381 g 0.176M 30H = 35%, Ca($4\text{gCO}_3 = 52.02\%$ $6 \text{ of NH}_4\text{Cl} = 57.$ 1.198 g HCl/litre, 0.06gm; 0.0265gm	Q2. V = 157.8 Q7. 3.78g OH) ₂ = 65% %, CaCO ₃ = 47 5%, % of NaC 6.974 g KCI/lit	ml Q3. V Q8.200 mL Q12. 8.67 7.98 $\%$ Q15. 3 Cl = 42.5 $\%$ re <i>Redox</i> 1	= 25 m Q9. 1 Q13. 83.33	L Q4. 6.608 1.92 g/litre 20.72 % Q16. 2.63%	3 g/litre Q10. 4 Q17. 0	Q5. (i) 0.569N, (ii) 50 470 mL 0.575 gm	VL Page 27 of 29 STO
	Q21. +	- 3 Q22. zer	ro Q23. 0	.588 N Q24. 3	337 mL	Q25. 22.5gm	Q26.	0.1M	10P/
om	Q27.0.	.254gm/lt	Q28. $V = 31.6$	8 ml Q29. 4	41.53%	Q30. 600 L N	MnO_4^- so	olution	B
es.c	Q31. 0	.15 N Q32.7.5 - 0.02M: K+ - 0	5 ml Q33. F 02M ClO = -	$e^{3+} = 0.02M; N$	$MnO_4^{-} =$	= 0.016 M; H ⁺ =	= 0.568	M; $Mn^{2+} = 0.004M;$	381
lass	Q34. 1	-0.02 M, K $= 0.176 gm$	Q35. 6.07 ≈ 6	Q36. 1	FeO = 1	3.34%; Fe ₂ O ₂	= 86.66	%	588
koc	Q37.3	3.33 ml ; 1.486 g	m Q38. H	$I_2 C_2 O_4. 2H_2 O_4$	= 14.3	5%, KHC ₂ \dot{O}_4 .	$H_2O = 8$	1.71%	3930
w.te	Q39. 9	4.38%	Q40. 27.27%	Double	titratio	n			36 O
ΜM	041 0	474 gm: 0 21 gr	n = 042.2	3 2 om 22 28	σm	043_0.069m	r 0265s	m	°,
ë	Q44.3	6.85 g/litre	Q45. 56.7%	Q46. 4.24 g/L	2; 5.04 g	/L Q47. 39.85	%;60.15	5%	000
bsit	Q48. 9	.31 g/litre	Q49. 90.0%	Q50. (i) 5.003	g/litre,	(ii) 2.486 g/litre			32 (
We				DUCK I	uranoi				55)-
rom	Q51.1.	406% 4gCO - 52 02%	Q52. 90.1%	Q53. 0.1281 §	g Q54. 056	0.174g; 3.48% 45 7% CaCl	057	1	: (07
ge f	Q58.4	.67L Q59. 0.1	25g Q60.1	.338gm	Q30.		Q37.	1	HH (
cka			4	DDOFICIE	NOV	TECT			. Sir
' Pa	01			PROFICIE	<u>INCY I</u>	<u>E51</u>			R. X
tudy	Q.1 1.	6.02×10^{23}	2.	2×10^{-3} mol	3.	36 ml	4.	4.48 L	s.
d S	5.	Laws of conserv	ation of mass		6.	16 gm	7.	GAM	RIYA
ıloa	8. 12	1/3 44.8 I	9. 13	14.2 gm 24.3	10. 14	44 g mol^{-1}	11. 15	4.13 g	KAI
IWO	16.	0.4	13.	0.1	18.	M_2 M/2	19.	0.1168	С К.
E	20.	12	21.	3.3125 g	22.	50	23.	5	JHA
RE	24.	0.4 M	25.	S ₈					ו s:
I	Q.2	False	2	False	3	False	4	True	ctor
	5.	True	<i>2</i> . 6.	True	3. 7.	False	8.	False	Dire
	9.	True	10.	True	11.	True	12.	False	ËS, I
	13.	True	14. 18	True	15. 10	False	16. 20	False	ASSI
	21.	False	22.	True	23.	False	20. 24.	False	CL
	25.	True							EKO
									F

DICHIOMETRY

Page 28 of 29 STOICHIOMETRY Q2. Al = 0.546 g; Mg = 0.454 g Q1.76.15% Q3. 51.6% Q4. 20ml, 40ml, 20ml Q6. $V_{\text{KIO}_3} = 0.42 \text{ mL}$, [HCl] = 0.02N, 0.73 gm/lt Q5. 30.55kg, 6 electrons Q7. 57.4% CuS, 42.6% Cu₂S Q8.5 gm Q9. 15.8% Q10. 0.06 gm Q11. 1.7613% Q12. 1.087×10^{-3} gm Q13. (a) 38.13%; (b) x = 6 Q16. 59.48% Q15.60%, 320gm Q17.44.335% Q14. 95.9% Q18. 3.04 kg Q19. 33.15% Q20. 27.9%, 50.92%, 21.18% Q21.100g Q22. 0.2424 mg/lt Q23. 0.0445 N; 0.0148 M; 2400 ppm Q24. 10.375ppm Q25. 5.594% As₂O₂ Q26. 35.5% available Cl₂ Q27. For Bromocresol, n = 1; For Phenolphthalein n = 2Q28. 49.8% Q29. (a) 2.52 x 10¹¹ gm; (b) 811 million pounds; (c) 6.1 million dollars Q30. NaCl = 67%; NaBr = 33% Q31. 14.56 Kg Q33. 7.95mg/ml Q32. 12.02 ml Q34. 40.77% Q35. 40 ml $Na_2S_2O_3$ solution.

MIDDLE GAME

<u>ANSWERS OF STOICHIOMETRY: MOLE II</u> <u>EX: MIDDLE GAME</u>

Q3. 51.6% Q1.76.15% Q2. Al = 0.546 g; Mg = 0.454 g Q4. 20ml, 40ml, 20ml Q5. 30.55kg, 6 electrons Q6. $V_{\text{KIO}} = 0.42 \text{ mL}$, [HCl] = 0.02N, 0.73 gm/lt Q7. 57.4% CuS, 42.6% Cu₂S Q8.5 gm 09.15.8% O10. 0.06 gm Q12. 1.087×10^{-3} gm Q11. 1.7613% Q13. (a) 38.13%; (b) x = 6 Q14.95.9% Q15.60%, 320gm Q16. 59.48% Q17.44.335% Q20. 27.9%, 50.92%, 21.18% Q18. 3.04 kg Q19. 33.15% Q21.100g Q22. 0.2424 mg/lt Q23. 0.0445 N; 0.0148 M; 2400 ppm Q24. 10.375ppm Q25. 5.594% As₂O₂ Q26. 35.5% available Cl₂ Q27. For Bromocresol, n = 1; For Phenolphthalein n = 2Q28. 49.8% Q29. (a) 2.52×10^{11} gm; (b) 811 million pounds; (c) 6.1 million dollars Q30. NaCl = 67%; NaBr = 33% Q31. 14.56 Kg Q32. 12.02 ml Q33. 7.95mg/ml Q34. 40.77% Q35. 40 ml Na₂S₂O₂ solution.

ANSWERS OF STOICHIOMETRY: MOLE II EX: MIDDLE GAME

Q1.76.15% Q2. Al = 0.546 g; Mg = 0.454 g Q3. 51.6% Q4. 20ml, 40ml, 20ml Q5. 30.55kg, 6 electrons Q6. $V_{KIO_2} = 0.42 \text{ mL}$, [HCl] = 0.02N, 0.73 gm/lt Q10. 0.06 gm O7. 57.4% CuS, 42.6% Cu₂S Q8.5 gm 09.15.8% Q12. 1.087×10^{-3} gm Q13. (a) 38.13%; (b) x = 6 Q11. 1.7613% Q16. 59.48% Q14. 95.9% Q15.60%, 320gm Q17. 44.335% Q18. 3.04 kg Q19. 33.15% Q20. 27.9%, 50.92%, 21.18% Q21.100g Q22. 0.2424 mg/lt Q23. 0.0445 N; 0.0148 M; 2400 ppm Q24. 10.375ppm Q25. 5.594% As₂O₃ Q26. 35.5% available Cl₂ Q27. For Bromocresol, n = 1; For Phenolphthalein n = 2Q28. 49.8% Q29. (a) 2.52×10^{11} gm; (b) 811 million pounds; (c) 6.1 million dollars Q30. NaCl = 67%; NaBr = 33% Q31. 14.56 Kg Q32. 12.02 ml Q33. 7.95mg/ml Q34. 40.77% Q35. 40 ml $Na_2S_2O_3$ solution.

ANSWERS OF STOICHIOMETRY: MOLE II EX: MIDDLE GAME

Q2. Al = 0.546 g; Mg = 0.454 g Q1.76.15% Q3. 51.6% Q4. 20ml, 40ml, 20ml Q6. $V_{\text{KIO}} = 0.42 \text{ mL}$, [HCl] = 0.02N, 0.73 gm/lt Q5. 30.55kg, 6 electrons Q7. 57.4% CuS, 42.6% Cu₂S Q8.5 gm Q9. 15.8% Q10. 0.06 gm Q12. 1.087×10^{-3} gm Q11. 1.7613% Q13. (a) 38.13%; (b) x = 6 Q14. 95.9% Q15.60%, 320gm Q16. 59.48% Q17.44.335% Q18. 3.04 kg Q19. 33.15% Q20. 27.9%, 50.92%, 21.18% Q21.100g Q22. 0.2424 mg/lt Q23. 0.0445 N; 0.0148 M; 2400 ppm Q24. 10.375ppm Q25. 5.594% As₂O₃ Q26. 35.5% available Cl₂ Q27. For Bromocresol, n = 1; For Phenolphthalein n = 2Q28. 49.8% Q29. (a) 2.52×10^{11} gm; (b) 811 million pounds; (c) 6.1 million dollars Q30. NaCl = 67%; NaBr = 33% Q31. 14.56 Kg Q32. 12.02 ml Q33. 7.95mg/ml Q34. 40.77% Q35. 40 ml $Na_2S_2O_3$ solution.